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Abstract

Inferences about other people’s knowledge and beliefs are cen-
tral to social interaction. In many situations, however, it’s not
possible to be sure what other people know because their be-
havior is consistent with a range of potential epistemic states.
Nonetheless, this behavior can give us coarse intuitions about
how much someone might know, even if we cannot pinpoint
the exact nature of this knowledge. We present a computational
model of this kind of broad epistemic-state inference, centered
on the expectation that agents maximize epistemic utilities. We
evaluate our model in a graded inference task where people
had to infer how much an agent knew based on the actions
they chose. Critically, the agent’s behavior was always under-
determined, but nonetheless contained information about how
much knowledge they possessed. Our model captures nuanced
patterns in participant judgments, revealing a quantitative ca-
pacity to infer amorphous knowledge from minimal behavioral
evidence.

Keywords: Computational modeling; Theory of Mind; Epis-
temic inference

Introduction
Imagine going to your friend’s house for dinner and, as you’re
cooking together, realizing that you’ll need more flour. As the
two of you head out, you notice that your friend immediately
starts walking in the direction of a large supermarket, rather
than her usual go-to bodega around the corner. From this
simple decision you might quickly suspect that she knows
something you don’t. Perhaps the bodega doesn’t carry flour;
maybe it’s cash only and your friend intends to use her credit
card; or the supermarket might be the only place that’s open
late. Inferences like these not only enable us to make sense of
others’ behavior, but also help us decide when to share what
we know, and from whom to learn what we don’t, forming a
cornerstone of complex social action.

The ability to interpret other people’s behavior in terms
of mental states, called a Theory of Mind, has its origins
in early childhood. From infancy, we interpret other peo-
ple’s behavior as goal-directed (Woodward, 1998) and infer
others’ goals and preferences by assuming that agents act to
maximize utilities—the difference between the costs they in-
cur and the rewards they obtain (Csibra, 2003; Jara-Ettinger,
Gweon, Schulz, & Tenenbaum, 2016; Liu, Ullman, Tenen-
baum, & Spelke, 2017). Throughout our life, this expec-
tation enables us to make a variety of judgments, such as
inferring what others like (Lucas et al., 2014; Jern, Lucas,
& Kemp, 2017), predicting how they might behave (Jara-
Ettinger, Schulz, & Tenenbaum, 2020), and determining their

social affiliations (Jern & Kemp, 2014; Ullman et al., 2009;
Jara-Ettinger, Tenenbaum, & Schulz, 2015).

As the example above shows, however, inferences about
others’ minds are not restricted to goals and preferences: they
also include judgments about what others may or may not
know. Consistent with this, research in computational social
cognition has found that people can make quantitative infer-
ences about others’ beliefs based on their behavior (Baker,
Jara-Ettinger, Saxe, & Tenenbaum, 2017). This work showed
that a computational model of joint belief-desire attribution,
embedded in a Bayesian framework for action understand-
ing, captures how people determine what an agent believes
about their environment given their behavior (e.g., if an agent
looking for lunch walks towards the end of the block, peeks
around the corner to see a Mexican food truck, and then turns
around, we can infer that the agent was hoping to see a differ-
ent food truck there).

While this work shows that people can make targeted be-
lief inferences, such as determining whether an agent knew
the type of food a vendor might be selling based on their be-
havior, these inferences often require access to a relatively
constrained hypothesis space and key actions that reveal the
agent’s beliefs. In many everyday situations, however, we
may not immediately know the most relevant epistemic hy-
pothesis to consider, and other people’s behavior may not
contain the amount of information needed to disambiguate
between different degrees of knowledge. In cases like these,
our representations of other people’s epistemic states appear
to consist of amorphous estimates of how much others know,
without being sure exactly what it is that they know. Re-
turning to the example in the introduction, when your friend
chose to go to the supermarket it was easy to infer that she
knew more than you did, despite not knowing exactly what
she knew. What computations underlie such epistemic infer-
ences?

Research investigating the ability to estimate and quantify
how much others know—intuitions about how much people
know without specifying exactly what they know—has gener-
ally focused on children. By early in preschool children can
represent how much others know about a domain, without
needing to list the full contents of their knowledge (Landrum
& Mills, 2015; Lutz & Keil, 2002). However, to our knowl-
edge, no work has explored our capacity to infer knowledge
magnitude from others’ actions, or specified the computations
that might underlie such inferences.



Here we propose that such inferences are supported by an
expectation that agents maximize utilities, through a sensitiv-
ity to the apparent costs that agents choose to incur. Specifi-
cally, we suggest adults understand that the costs agents incur
often depend on the knowledge they possess. Thus, an abil-
ity to infer the subjective costs that an agent appears to act
under can reveal the amount of knowledge they might have.
In the example above, for instance, the fact that your friend
chose to incur a seemingly higher cost (walking to a place
that was farther away) for the same reward (getting flour),
suggests that she possessed privileged information—leading
her to conclude that the large supermarket was a better option
than you’d originally assumed.

In this paper we present a computational model of epis-
temic quantification through an expectation that agents max-
imize utilities, and we test its performance on a task where
participants must infer how much someone knows based on
their behavior. Our work shows that people can seamlessly
make graded quantitative estimates of how much someone
knows, and that these inferences can be explained through an
expectation that agents maximize utilities (the difference be-
tween the costs they incur and the rewards they obtain), and
an understanding that the costs agents incur depend on the
knowledge they possess.

Computational Framework
Our computational framework builds on a recent family of
computational models of mental-state inference structured
around an expectation that agents act rationally—formalized
as a generative model of utility maximization, combined with
a mechanism for inverting this causal model via Bayesian
inference (Lucas et al., 2014; Jern et al., 2017; Baker et
al., 2017; Jara-Ettinger et al., 2020). We extend this frame-
work by proposing that adults often expect agents’ costs to be
mediated by their knowledge state—and can thus infer oth-
ers’ epistemic states from observing the apparent costs they
choose to incur.

In this project, we consider scenarios in which an agent’s
knowledge state affects the expected cost of an action plan. In
general, for a given action plan a, we can write E[Cost(a)|k]
to mean “the expected cost of implementing action plan a,
given knowledge state k”. If the reward of completing action
plan a is R(a), then the total expected utility of action plan a,
given knowledge state k, is R(a)−E[Cost(a)|k].

Suppose now that the agent has knowledge state k and set
of possible action plans {a1, . . . ,an}. A standard assumption
for utility-based agent models is that the agent will compute
the expected utility of each action plan R(ai)−E[Cost(ai)|k],
and probabilistically select the best option through softmax-
ing. By placing a prior distribution P(k) over possible knowl-
edge states k ∈ K, a Bayesian observer can make inferences
about the agent’s knowledge state k, given the observed ac-
tions a according to Bayes’ rule:

P(k|a) ∝ P(a|k)P(k) (1)

This model allows observers to infer a posterior distribu-
tion over what an agent knows given their behavior. As the
example in the introduction shows, however, many situations
are under-determined, and in these cases it is not possible to
infer exactly what an agent knows. In our framework, this
situation arises when an agent’s behavior is consistent with
a range of different knowledge states, and it is thus impossi-
ble to determine under which exact knowledge state the agent
was acting. But even when we can’t infer the precise con-
tents of others’ knowledge representations, we may still be
able to infer approximately how much they know (getting a
rough sense of how knowledgeable they are). Thus, given
a posterior distribution over what the agent might know, we
formalize the quantity of amorphous knowledge Q as the ex-
pected quantity of knowledge encoded in the probable epis-
temic states that the agent has, given by

Q = ∑
k∈K
|k|p(k|a) (2)

where K is the set of all possible epistemic states, |k| is
a quantification of how much the agent knows in that state,
and p(k|a) is the posterior probability of that knowledge state
(Eq. 1). Naturally, precisely defining the measure |k| may be
highly context-sensitive. Here we focus on its application in
a particular experimental context but return to the idea of how
this might generalize in the discussion.

To evaluate this framework, we considered cases like those
shown in Figure 1. Here, an agent is deciding which of two
fields to go on an easter egg hunt in, knowing that each field
has only one egg with a prize inside (and that the reward is al-
ways the same in every field). In this paradigm, a knowledge
state k consists of a subset of eggs that the agent might be
aware of. The cost the agent incurs depends on their search
trajectory. We assume that agents navigate efficiently in space
(Csibra, Bı́ró, Koós, & Gergely, 2003), and search only loca-
tions where they think they may find the prize (that is, agents
should not visit a location they are sure does not contain the
prize). This implies that when the agent’s knowledge state
includes information about the contents of the prize egg, the
agent will always move directly towards the prize. Otherwise,
the agent will search the eggs in a way that minimizes the ex-
pected search time. Finally, to compute equation 2, we treat
the amount of knowledge in an epistemic state as 1− the pro-
portion of eggs the agent is still uncertain about (if the agent
knows where the prize is, they know the rest of the eggs are
empty, and thus the proportion known is 1; if the agent is un-
sure about half of the eggs, the proportion known is .5; etc.).

To produce a prediction for a given scenario, our generative
model sampled 10,000 knowledge states over the contents of
each field, predicted which field the agent would visit (by
softmaxing the expected utility of each field given the agent’s
knowledge), and recorded both the agent’s knowledge state
over each field, and the agent’s predicted choice. To perform
epistemic inference, when given an agent’s actual choice of
field in this scenario, the model returned the average propor-



tion known about each field under cases where the predicted
choice was consistent with the observed choice.

Our model has four parameters: the reward of obtain-
ing the prize (set as a constant R(ai) = 100), the cost of
checking an egg’s contents upon reaching it (randomly cho-
sen for each knowledge sample from the continuous uni-
form distribution [1,3]), a prior over the probability the
agent knew the contents of each egg (0.5; this prior was
also communicated to participants in our task), and the soft-
max parameter (τ = 3). All parameter values and model
predictions were preregistered prior to data collection (see
project OSF page: https://osf.io/q3szu/?view only=
6e23c6b79dc24e21acb5a332b0a190ed).

Alternate Model
Our main model assumes that people quantify the cost of
obtaining the prize in each field under different degrees
of knowledge, and then reason about the knowledge states
under which the agent’s actions would have been utility-
maximizing. However, it is possible that adults generally do
not apply such complex computations when inferring others’
knowledge states, and instead rely on simpler rules or heuris-
tics. Such heuristics could get things right most of the time,
while requiring less effort to apply.

To address this possibility, our alternate model encoded
the simple heuristic that agents tend to choose options they
know more pieces of information about. Critically, this al-
ternate model did not consider agents’ knowledge states in a
full mentalistic way: it did not compute the utility of each
field based on the agent’s knowledge state, and did not ex-
pect agents to navigate directly to an egg if they knew it
contained the prize. It simply considered the proportion of
eggs with known contents in each field, and expected the
agent to always choose the field where this proportion was
larger (or choose randomly when this proportion was equal
across fields). We then generate predictions from this alter-
nate model using the same sampling procedure as in the main
model. This model was not preregistered, but uses only one
parameter: the same knowledge prior as in our main model.

Experiment
To test our model, we designed a task where an agent’s behav-
ior (and its costs) could reveal approximately how much they
knew—but was too impoverished to reveal precisely what
they knew. Participants watched an agent choose which of
two fields to search for a prize hidden in an easter egg. The
cost of locating the prize in any given field was determined
by the number of eggs, their spatial distribution, and the true
location of the prize. By manipulating all three variables, we
test if participants infer how much others know by quantify-
ing and comparing their expected costs—or whether partici-
pants rely on a simpler heuristic that does not require them to
track or reason about others’ costs when inferring epistemic
states. Our procedure, stimuli, sample size, and analysis plan
for our main model were preregistered (see OSF page).

Field A Field B
a)

b)
Field A Field B

Figure 1: Example of the experimental stimuli. The arrow
indicates the agent’s chosen field; eggs containing a prize are
circled. Panel A depicts a strong epistemic contrast: here,
you might infer that the agent knows approximately where
the prize is located in their chosen field, and very little about
the other field. Panel B depicts a more graded contrast: here,
you might suspect that the agent knows more about the prize’s
location in their chosen field, but may be less certain they
know a lot (because their chosen field is also much less costly
to search).

Participants
40 adult participants with U.S.-based IP addresses were re-
cruited via Amazon Mechanical Turk (M = 35.05 years, SD
= 9.23). 7 additional participants were recruited but excluded
from the study for failing a preregistered inclusion trial.

Stimuli
Stimuli consisted of 19 test trials, plus one inclusion trial. The
test trials were presented in a randomized order, and the in-
clusion trial was always presented last. Each trial showed an
agent, and two fields. The fields each had easter eggs placed
inside, and one egg in each field contained a hidden prize.
This egg was circled for participants. An arrow indicated the
agent’s path to their chosen field, thus showing which field
the agent chose to visit on each trial (see Figure 1).

Stimuli were based on three scenarios (pairs of fields) we
thought could elicit a range of model ratings. To manipulate
the cost of searching each field, eggs in the first field (field
A) were always wide-spread. The second field (field B) con-
tained the same number of eggs, but these eggs were instead
clustered near the middle of the field. The first scenario is

https://osf.io/q3szu/?view_only=6e23c6b79dc24e21acb5a332b0a190ed
https://osf.io/q3szu/?view_only=6e23c6b79dc24e21acb5a332b0a190ed


shown in Figure 1a. The second scenario was based on the
first: we selected a subset of 6 eggs from each field, thus
varying the number of eggs but not their position. The third
scenario was in turn based on the second, but here we instead
varied the position of the eggs in field A (capturing a case
where most of the eggs in field A were extremely costly; see
Figure 1b).

To select the final locations of the prize in field A, we pro-
vided each scenario as input to the model, but systematically
varied which egg in field A contained the prize, yielding 42
trials (21 unique scenarios x 2 choices per scenario).1 We se-
lected 24 trials (12 unique scenarios x 2 choices per scenario)
that both produced a range of model responses, and were not
too similar to each other. In preparation to present stimuli to
participants, some trials were mirrored, and we slightly var-
ied the position of the prize in field B amongst similar sce-
narios (to prevent participants from noticing similarities be-
tween trials).2 We then obtained final model predictions, and
excluded any trials where the model’s knowledge predictions
were based on less than 500 samples (that is, where the pre-
dicted choice of field was consistent with the observed choice
in less than 5% of cases). This yielded 19 final trials; this cri-
terion and our final set of stimuli was preregistered.

Procedure
Participants were introduced to an agent going on easter-egg
hunts in a two-dimensional grid-world. Participants learned
that a farmer had placed easter eggs in his fields, hiding a
prize inside one egg in every field. This prize (one silver to-
ken) was always the same in every field, and the prize egg
was always circled for participants.

Participants learned that because the grass in the fields was
quite short, the agent could always see where the eggs were
located in a field before entering it. But while the prize egg
was circled for participants, the agent didn’t necessarily know
which egg contained the prize. Participants learned that the
agent had seen the farmer set up some of the eggs; it was un-
clear what prior over knowledge participants would bring to
the task, so we specified that the agent had a 50/50 chance of
knowing the contents of any given egg. And participants were
explicitly instructed that the agent did not always know the
same amount about every field; the amount she knew about
the location of the prize in each field could differ.

1We did not expect the location of the prize in field B to strongly
affect the model’s predictions; to test if this was the case, we did
also replicate one scenario given a different prize location in field B,
yielding an additional 18 additional trials. The location of the prize
in field B indeed had little effect (as all of these eggs are so close
to each other), and thus we selected our final stimuli by considering
primarily the location of the prize in field A.

2Despite slightly varying the prize’s location in field B across
similar trials in our preregistered stimuli, our model predictions were
not updated accordingly prior to preregistration. Because we col-
lected our data using the preregistered stimuli, we obtained new
model predictions for any trials where the location of the prize in
the stimuli did not match the coordinates originally used to generate
the preregistered model predictions. We used the same preregistered
parameters.

Participants learned that the agent always had to choose be-
tween two fields, and could only search the field she chose.
An arrow indicated which field the agent had chosen to search
(see Figure 1). Participants were oriented to factors that might
affect the agent’s search decision: they were told that the
agent always wanted to find the prize as quickly and easily
as possible, and that the difficulty of finding the prize was de-
termined by the number of eggs in a field, their distance from
the entrance, and the amount the agent already knew about
the location of the prize. Note that while this tutorial ensured
participants were attentive to the main features of our task,
we are interested in how participants combine these different
pieces of information and reason over them to infer what oth-
ers know. The tutorial did not specify how participants should
weight or use any of these features in their judgments.

To access the task, participants then completed a preregis-
tered inclusion quiz that assessed their understanding of the
task instructions. Participants were given two chances to pass
the inclusion quiz; those who failed on their first attempt were
required to review the task introduction before trying again.
Participants who failed both attempts were not given access
to the task. Upon passing the inclusion quiz, participants then
completed the 19 test trials (presented in a randomized order),
plus one inclusion trial at the end. For each trial, participants
were asked to rate, on a sliding scale from 0 - 100, how much
the agent knew about the location of the prize in each field.
Critically, participants rated how much the agent knew about
both fields, not just the field she had chosen. The preregis-
tered inclusion trial always came last. It was similar to the
test trials, but presented an extreme contrast where we could
make a strong prediction about the pattern of judgments an
attentive participant should make. Participants whose judg-
ments differed from our preregistered criteria were excluded.
Finally, participants were asked what they thought the point
of the task had been, and were given an opportunity to pro-
vide feedback or note any technical difficulties.

Results
Participants rated the agent’s knowledge about both fields in
19 test trials, yielding 38 ratings. As preregistered, participant
responses were averaged by question, and then z-scored; the
corresponding model predictions were also z-scored.

Figure 2 shows the overall results, revealing that our model
was highly correlated with participant judgments, r = 0.94
(95% CI: 91.78,98.84). And this correlation did not reflect
only cases where both the model and participants inferred
a lot of knowledge or very little knowledge. Critically, it
included cases where both the model and participants were
equally uncertain, in a graded manner, about how much the
agent knew. Figure 3 plots the trial-by-trial correspondence
between model and participant ratings, showing that partic-
ipants’ judgments were not bi-modal, but rather graded in a
way that closely tracked our model’s predictions.

To ensure that these results could not be the product of a
simple heuristic, we implemented an alternate model. Rather
than performing full mental-state inference, our alternate
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Figure 2: Comparison between our model and the alternate
model, with linear regressions fit to each dataset. Each point
represents one knowledge rating, with model predictions on
the x axis and participant judgments on the y axis. Gray bands
show 95% confidence intervals in the regression.

model simply assumed that agents always choose fields where
they know about a greater proportion of eggs. Note that we
only preregistered an analysis plan for our main model, but
test the performance of the alternate model in the same way.
The alternate model showed a weaker correlation with par-
ticipant judgments, r = 0.84 (95% CI: 78.58,89.77), demon-
strating that the amount of locations an agent knows about in
each field does matter, but that predictions made on the basis
of this one factor (without considering costs) do not capture
the full pattern of participant judgments. A bootstrap over the
correlation difference revealed that the main model was reli-
ably better correlated with participant judgments than the al-
ternate model (correlation difference, alternate model−main
model = −0.11, 95% CI: −17.34,−4.36; not preregistered).
As Figure 2 reveals, although the correlation between the al-
ternate model and participant judgments was still high, this is
only because the alternate model categorized every judgment
into two rough bins. These predictions were approximately
correct, but lack the nuance that participants’ epistemic infer-
ences showed, and that our model was able to capture.

Discussion
Here we presented a computational model of amorphous epis-
temic inference. Our model sought to explain people’s ca-
pacity to infer how much others might know in situations
where inferring their precise knowledge states would be dif-
ficult (due to a lack of diagnostic actions, and large hypothe-
sis spaces over potential epistemic states). Our computational
framework was based on a growing body of research showing
that mental-state inference is structured around an assumption
that agents act to maximize utilities—the difference between
the costs that agents incur and the rewards they obtain (Jara-
Ettinger et al., 2016; Gergely & Csibra, 2003; Lucas et al.,
2014; Jern et al., 2017). Our model builds on these ideas, and
extends them by explicitly modeling the idea that the costs
agents expect to incur often depend on the knowledge they

possess. Consequently, others’ choices can reveal the costs
they appear to be acting under, providing indirect insight into
the nature and quantity of their privileged knowledge.

The results of our experiment suggest that people can de-
rive graded estimates of how much others know based on
limited observable action, and their inferences matched our
model predictions in a quantitative manner. Moreover, an
alternative model that inferred knowledge through an as-
sumption that agents always pursue options they know more
about (without considering how this knowledge would affect
agents’ subsequent search behavior, or their costs) failed to
capture the graded structure of participants’ judgments.

Related work has developed computational models that ex-
plain how people infer each other’s beliefs about the world
(Baker et al., 2017) as well as beliefs about their own com-
petence and preferences (Jara-Ettinger et al., 2020). These
inferences, however, often depend on access to a limited set
of epistemic hypotheses, and to observable behavior that is
diagnostic of the agent’s epistemic state. While these infer-
ences are undoubtedly critical for social interaction, many ev-
eryday social behaviors lack the information needed to make
such precise and targeted epistemic inferences. We show that,
in such situations, people can nonetheless derive quantitative
estimates of how much knowledge someone might possess.

To make these broad epistemic inferences, our model
considered a large space of possible epistemic states and
weighted the amount of knowledge expressed in each epis-
temic hypothesis by its posterior probability (Equation 2).
This highlights two critical assumptions that our model
makes. First, observers must have access to a range of epis-
temic hypotheses that they can evaluate; second, they must
have a way to quantify how much knowledge is expressed in
each hypothesis. While the first assumption may seem plau-
sible in common situations, there are many cases where we
do not know what other people’s epistemic states could look
like (e.g., we can represent that pilots know how to fly planes
while having no idea precisely what a pilot knows). Simi-
larly, the second assumption (that it is possible to quantify the
knowledge encoded in each hypothesis) was easy to formal-
ize in the experimental context that we considered. But this is
not always the case; and, as illustrated by the pilot example,
sometimes we may not even know what there is to know.

These assumptions highlight an important limitation of our
findings. Here, our goal was to describe epistemic inference
at a computational level (Marr, 1982), not an algorithmic one.
It is quite possible participants did not consider the same
kinds of hypotheses our model did. And if participants did
sample knowledge states in the same way our model did, they
may have come to the same conclusions based on far fewer
samples (Vul, Goodman, Griffiths, & Tenenbaum, 2014); fu-
ture work should test this possibility. Furthermore, while
our alternate model demonstrates participants were not us-
ing a simple cost-insensitive heuristic, it is an open question
whether other heuristics could explain participant judgments.
Future work will investigate whether this is the case.
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Figure 3: Detailed results for the experiment. Each panel presents one trial, with results split by the field rated (Field A or Field
B, indicated on the x axis). The y axis indicates standardized knowledge ratings. Participant judgments are plotted in blue;
model predictions are plotted in red. Vertical bars show 95% confidence intervals over participant judgments. The schematics
show the position and number of eggs in each field, the egg with the prize, and the field the agent ultimately chose in each trial.

Our findings raise two additional open questions. First, be-
cause each field contained only one prize, it was not necessary
for the agent to see inside every egg to have full knowledge.
Specifically, if the agent knew which egg contained the prize,
they could conclude that the rest of the eggs in the field were
empty by default. Thus, while the agent’s knowledge was of-
ten graded (if she didn’t know where the prize was, she could
still avoid opening eggs she knew were empty), it wasn’t al-
ways (if she knew where the prize was, she also knew where
it was not). While such situations are commonplace (if you
find the silverware drawer in a new kitchen, you don’t need
to keep searching), knowledge is not always all-or-none, and
future work should continue to explore adult epistemic infer-
ence in a wider variety of contexts. Relatedly, in future work
it will be important to investigate whether there are any gen-
eral measures, such as entropy, that might support quantifying
knowledge independent of context.

Finally, we proposed that our task elicited, and model cap-
tured, amorphous knowledge inferences. However, we did
not test whether participants in fact made specific inferences
in this task. While many knowledge states could have given
rise to each observed choice, it is still true that knowledge
over certain eggs affects the expected utility of an action plan

more than others. Participants may in fact be able to make
specific inferences in such cases (for instance, inferring that
an agent who chooses an apparently more costly field may
know that some of the furthest eggs are empty). However,
participants should be more uncertain when many knowl-
edge states affect the expected utility of an action plan in the
same way. Our model already infers the probability that each
egg’s contents are known by the agent; future work could
test whether these predictions capture participant judgments
as well.

To conclude, in the current work we explain a common
everyday epistemic inference: the ability to infer how much
others know even when specific inferences about what they
know are under-determined. But as we navigate the world,
these are not the only epistemic inferences we make. From
observing the outcome of others’ goal-directed actions we in-
fer what they thought they knew (and what they actually did);
from observing their choices to seek information (and at what
cost) we infer how much they believed they could learn; and
from observing their interactions with other agents, we infer
how much they think others know. The work presented here
serves as an initial step towards modeling the full scope of
epistemic inferences people make in their everyday lives.
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